1)
$$f(x) = x^2 - x - 1$$

 $f(x) = 2x - 1$
 $2x - 1 = 0$
 $x = \frac{1}{2}$
 $f'(x) = \frac{1}{2}$

$$f(x)$$
 is decreasing on $(-\infty, \frac{1}{2})$ b/c $f(x) < 0$
 $f(x)$ is inc on $(\frac{1}{2}, \infty)$ b/c $f'(x) > 0$

f(x) has a local main @ x=1/2 b/c f(x) As signs from - to +.

2)
$$f(x) = 2x^{4} - 4x^{2} + 1$$

 $f'(x) = 8x^{3} - 8x = 0$
 $8x(x^{2} - 1) = 0$
 $x = 0 \quad x = \pm 1$
 $f(x) - + - +$

f(x) has a local min @ x=-1 & x=1 b/c f'(r) As signs from - to +

f(x) has a local max @ x=0 b/c f'(x) As signs from + to -.

3)
$$f(x) = x e^{x}$$

 $f'(x) = x e^{x} + e^{x}$
 $= e^{x}(x+1) = 0$
 $x = -1$
 $f(x) = +$

$$f(x)$$
 is dec on $(-0,-1)$ b/c $f'(x) < 0$
 $f(x)$ is inc on $(-1,\infty)$ b/c $f'(x) > 0$

f(x) has a local min ex=-1 blc f'(x) As signs from - to +.

blc f"(x) < 0.

4)
$$f(x) = 4x^3 + 21x^2 + 36x - 20$$
 $f(x)$ is concave down on $(-\infty, -\frac{7}{4})$
 $f'(x) = 12x^2 + 42x + 36$ blc $f''(x) = 0$.
 $f''(x) = 24x + 42 = 0$
 $24x = -42$ $f(x)$ is concave up on $(-\frac{7}{4}, \infty)$
 $x = -\frac{7}{4}$ blc $f''(x) > 0$
 $f''(x) = \frac{7}{4}$ blc $f''(x) = 0$

$$f(x)$$
 is concave up on $(-\frac{7}{4}, \infty)$
blc $f''(x) > 0$

f(x) has a P.o. I @ x = - 74 b/c f "(x) As signs.

5)
$$f(x) = 2x^{1/5} + 3$$

 $f'(x) = \frac{2}{5}x^{-1/5}$
 $f''(x) = -\frac{8}{25}x^{-9/5}$
 $x = 0$

$$f(x)$$
 is concave down on $(-\infty,0)$ & $(0,\mathbb{A})$ b/c $f''(x) < 0$.

6)
$$f(x) = -x^{4} + 4x^{3} - 4x + 1$$

 $f'(x) = -4x^{3} + 12x^{2} - 4$
 $f''(x) = -12x^{2} + 24x = 0$
 $-12x(x-z) = 0$
 $x = 0 \quad x = 2$
 $f''(x) = -12x^{2} + 24x = 0$

7)
$$y = xe^{x}$$

 $y' = xe^{x} + e^{x}$
 $y'' = xe^{x} + e^{x} + e^{x}$
 $= e^{x}(x+z) = 0$
 $x = -2$

f(x) has a P.o.I € x=-2 ble f"As signs

9)
$$f(x) = x^{4/3} - 4x^{1/3}$$

 $f'(x) = \frac{4}{3}x^{1/3} - \frac{4}{3}x^{-2/3}$
 $f''(x) = \frac{4}{9}x^{-2/3} + \frac{8}{9}x^{-5/3} = 0$
 $y = 0$

f(x) has P.o. I @ x=-2, o ble f" Ds signs

$$f(x)$$
 is concave down on $(-\infty,0) \notin (z,\infty)$
blc $f''(x) \in D$

f(x) is concave up on (0,2) blc f"(x)>0 f(x) has a P.o.I. @ x=0,2 blc f"(x) As signs.

8)
$$f(x) = \operatorname{arctan} x$$

 $f'(x) = \frac{1}{1+x^2} = (1+x^2)^{-1}$
 $f''(x) = -1(1+x^2)^{-2} \cdot 2x$
 $= \frac{-2x}{(1+x^2)^2} = 0$
 $x = 0$
 $x = 0$
 $x = 0$
 $x = 0$ blc f'' As signs

FREE RESPONSE QUESTION

- a) f(x) has a local max @ x=-3 d x=4 b/c f(x) As signs from + to-
- b) f(x) has a D.o. I @ x = -4, -1, Z b/c f"(x) As signs.
- c) f(x) is concave up on (-5,-4), (-1,1) (1,2) ble f">0
- d) f has a positive slope on (-5,-3) & (1,4) blc f(x) > 0.